Indicator solutions are used to tell if a liquid is an acid or a base. Let’s make our own indicator solution out of red cabbage!

MATERIALS

- 1–2 cups red cabbage leaves
 Alternatives: Red grapes, radish skin, turnip skin, red onion, plum skin, purple 100% grape juice without adding additional water
- Water
- A way to boil water
- A container that can hold very hot liquid (e.g. soup bowl, small cooking pot, or large coffee mug)
- At least 4 small clear cups
- Test Liquids
 - White vinegar
 Substitute: apple cider vinegar, rice wine vinegar, or lemon juice
 - Baking soda dissolved in water
 Substitute: over-the-counter anti-acids dissolved in water.
 - 2 or more of these additional test liquids:
 Milk, tea, fruit juice, salt water, tap water, lemon/lime soda, Cream of Tartar dissolved in water
- Paint brush
 Substitute: q-tips, cotton balls
- Science notebook or paper
- Something to write with
- Optional: Cooking oil
- Optional: Tape
- Optional: Scissors

SAFETY NOTE

While these items are safe to touch, do not eat or ingest them as part of the experiment.

Experiment continued on next page...
PROCEDURE continued...

MAKING THE INDICATOR SOLUTION

- Rip up red cabbage leaves into small shreds.
- With your adult’s help, boil some water. Use about equal parts water to shredded cabbage.
- If you’re using a different indicator plant, use whichever of these techniques makes sense in your situation: smush, peel, tear, or have your adult slice it.
- With your adult, combine shredded cabbage leaves with boiling water in a heat-safe container.
- Let cool until lukewarm or cooler.
- Strain out the cabbage leaves.

TESTING THE INDICATOR, METHOD 1

- Pour one of your test liquids into a small cup, filling no more than halfway.
- Write down the name of the test liquid and tape it to the cup.
- Pour about as much indicator liquid into the first cup and mix. What do you notice?
- Repeat for each test liquid.
- Arrange the cups by the color of the liquid inside, ordering from most red to most blue.
- Write down the order of the cups in your science journal.

Experiment continued on next page...
PROCEDURE continued...

TESTING THE INDICATOR, METHOD 2:

• Paint several small patches of this indicator solution spread out on a sheet of paper. Make as many patches as you have liquids to test, plus at least one extra.

• Let dry.

• Label the patches with the names of the liquids you will be testing, labelling one patch ‘control’.

• Leaving the control patch alone, drip or paint a small amount of each test liquid on its designated patch. What do you notice happening?

• Thoroughly rinse the paintbrush between each test liquid, then repeat for each test liquid.

• Once dry, cut the individual test strips apart.

• Tape the test strips into your science notebook in order of most red to most blue.

TIP: Tape either on the back of the test strips, or around the edges. Some tapes are very mildly acidic and may change the color of the test strips over time if you tape over the colored testing patch.

ANALYZING THE RESULTS:

Look at the order you sorted your test liquids into. Knowing that sour liquids are acidic and slippery liquids are bases, which color means your indicator liquid mixed with an acid? Which color means that your indicator liquid mixed with a base? Were any of your test liquids somewhere in the middle, or neutral? Write down your predictions in your science journal.

Experiment continued on next page...
DID YOU KNOW
Many liquids are something called an acid or a base. Acids and bases are opposites. Drinks that taste sour are examples of mild acids, while slippery things like dish detergent and baking soda solution are mild bases. Something that is not an acid or a base is called neutral. Pure water is a neutral liquid.

TRY THIS
Your indicator solution can be used to make art! Cover a piece of paper by painting on your indicator solution and let it dry. Then paint designs on the purple paper with mild acids and bases, and watch the color change to red and blue!
6–8 GRADE EXPLORATION

Explore the following questions and record your answers in your science notebook.

- Pick 3 additional test liquids that you haven’t tested yet. Using what you learned in the experiment, make a prediction about whether these test liquids will be a strong acid, a weak acid, neutral, a weak base, or a strong base. Record your predictions in your science notebook, then test the 3 new liquids. What did you find? Did any part of your results surprise you?

- Acids and bases are measured using a scale called the pH scale, which goes from 0 (most acidic) to 14 (most basic). 7 is in the middle, which makes it neutral. By sorting your liquids by the color that they turned the indicator, you have sorted them by pH. Look up the pH of the liquids you tested and label them with their pH numbers in your science notebook.

- Every time a liquid goes down by one whole number on the pH scale, it becomes 10 times more acidic. And each time the pH goes up by one whole number, it becomes 10 times more basic.

 - Imagine you have two liquids, labelled A and B. Liquid A has a pH of 3, while liquid B has a pH of 5. Which one is more acidic? By how many times?