Dear Students and Parents,
We hope you enjoyed your recent day of science exploration and investigation with Pacific Science Center’s Engineering van. The Science On Wheels program, which began operating in 1974, is an interactive outreach program that travels to schools across the state of Washington.

The Engineering van provides students with hands-on science experiences. Students participate in a lively assembly, explore an interactive exhibit area and receive a 45-minute hands-on lesson. Our goal is to foster an interest in science, technology and mathematics.

We encourage you to talk about our visit and investigate the activities below. They require few materials and are easy to do. Remember: your child and his or her friends will be the ones to invent new solutions for the future! We hope you enjoy doing these activities together!

~Science On Wheels Teachers

Machine Building Station

Materials
- storage containers and other household items (paper towel rolls, plastic cups, spoons, string, pipe cleaners, boxes, etc.)
- scissors
- glue
- tape
- graph paper
- white paper
- colored pencils or crayons

Design
Design and draw plans for a new machine. You can make a fanciful, silly machine or attempt to make a real machine. Using the materials available in your home, build a new machine or structure. You could make a flying car, room-cleaner-upper, or a candy dispenser! See if you can create something with moving parts.
The Space Needle in Seattle is 605 feet tall. The John Hancock building in Chicago is 1127 feet tall, and it has a swimming pool on the 44th floor. How do architects and engineers make sure a skyscraper will remain upright in strong winds (especially in Chicago, the “Windy City”)?

Design
Work with your family to build the tallest free-standing structure possible. Experiment with various shapes.

Test
Hold down the base of the structure and use a blow dryer on a no-heat setting to test how well the structure would stand up to a wind storm.

Re-Design
Based on your test, which shapes are the sturdiest? What was the strongest part of your building? Re-design your building to make it stronger!

Oobleck is a non-Newtonian liquid, meaning it is a liquid that doesn't follow all of Newton's laws of liquids. Sometimes it seems like a liquid, sometimes it seems like a solid.

Design
Put the water and food coloring in a large bowl and begin adding corn starch and mixing. Eventually the mixture will get thicker; keep adding and stirring until you can no longer stir it.

Test
First, take a moment to play with the Oobleck. How would you describe it (sticky, slimy, crunchy...)? Squeeze it into a ball shape. How long does it hold the shape? Pour it into another container and see what happens.

Design your own tests. If you drop it into the bowl, what does it do? Can you break it?

Materials
- 1 spoon
- 1 clear drinking glass
- water (1 cup)
- food coloring (optional)
- corn starch

Resources
Find these books at your local library or book store:

Pulleys and Gears (Simple Machines), by David Glover, 1997
The Usborne Illustrated Handbook of Invention & Discovery, Usborne Pub. Co. ,1986
Underground, by David Macaulay, 1983
Building Big, by David Macaulay, 2000

Credits
Science On Wheels Staff
Teresa Demel
Nikki Lynn
Katie Bedient
Melissa Thompson
Sam Chamberlain
Catherine Valiant

Graphic Designer
Katie Dresel

© 2006 Pacific Science Center
200 Second Avenue North • Seattle, WA 98109
Printed on 100% post-consumer recycled paper.